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Abstract-Natural convection from two-dimensional vertical plates with horizontal rectangular grooves 
was studied experimentally and numerically. A Mach-Zehnder interferometer was used in the experiment 
and the local Nusselt numbers at each groove surface (outer, bottom, inner, and top surfaces) were 
measured quantitatively from the interferograms. In some cases (grooves of some aspect ratios with low 
Rayleigh number), the total heat transfer rate from the grooved surface is even smaller than that from a 
flat plate in spite of the increased surface area ; care should be practiced to avoid such cases. As revealed 
by the numerical analysis, for given conditions, secondary recirculation flows are usually found in the 
groove. They prevent the main flow from flowing into the groove. As they happen, the heat transfer rate 
at the inner surfaces is significantly smaller than that at the outer surface. The effect of Rayleigh number 
for each aspect ratio was studied. The results were summarized using the average Nusselt number vs. 
Rayleigh number correlations. The correlations may be used for selecting proper aspect ratio and dimension. 

0 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

The wide spread of modern electronic components 
and systems has been made possible by the rapid 
reduction of size with greater capability and pro- 
cessing rate. The (distance between chips is becoming 
shorter and the integration rate of components is get- 
ting higher. The electric power consumption increases 
considerably while the size of electronic equipment 
diminishes. During the past 15 years, the power dis- 
sipation of chips in mainframe computers has 
increased almost LO times. Although the chip size has 
also increased, the chip power density has been steadily 
increasing too. The approximate chip level heat flux 
or the power density has increased from 20 to 60 W 
cm-* during the .time. It is expected to reach 100 W 
cm-’ in the near future (Rymaszewski [I]). 

Increase of the power density necezsitates proper 
heat dissipation methods from the electronic com- 
ponents. Various cooling modules and the problems 
associated with Ielectronic equipment cooling were 
well reviewed by lncropera [2]. 

The cooling methods may be classified into air- 
cooling, air-liquid hybrid cooling, indirect liquid 
cooling, and direct liquid cooling (immersion 
cooling). They can be also classified to natural con- 
vection, forced convection and boiling in accordance 
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with the employed physical phenomena (Chu and 
Simons [3]). 

The cooling system using natural convection has 
the advantage of low noise and high reliability. When 
used in air, it is generally limited to electronic com- 
ponents of low power density. High power density 
may be handled by immersion cooling, a liquid natural 
convection system for the next generation electronic 
circuits. 

Grooved plate is one of the most popular geometries 
in extended surface cooling techniques and various 
heat transfer situations can be met depending on the 
flow and/or the groove orientations. The application 
of vertical grooves is an efficient way so far as the 
boundary layer thickness is thin enough to be treated 
as one from a vertical flat plate. When the groove 
orientation is horizontal, however, it proposes different 
flow situations and only limited number of researches 
have been reported in spite of the wide practical appli- 
cations such as cylindrical pin fins (see Fig. 1). It 
gives impetus to this study and the case of natural 
convection from a vertical plate with horizontal 
rectangular grooves is studied in depth here. 

Reviewing the related works, Fujii and Imura [4] 
experimentally investigated natural convection from 
a flat plate with arbitrary inclination and they 
suggested the correlation, Nu = k(Gr Pr * cos O)“*, for 
laminar region. Hung and Shiau [5] investigated local 
steady-state natural convection heat transfer in ver- 
tical parallel channel with a two-dimensional rec- 
tangular horizontal rib. By using experimental data, 
they found that the average Nusselt number correlates 
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NOMENCLATURE 

c P specific heat [J kg-’ Km’] T temperature [K] 
Gr, Grashof number [ = (g/IATW3/v2)] u x-direction velocity [ m s-‘1 

g gravitational constant [9.81 m ss’] V v-direction velocity [m SC’] 
h local heat transfer coefficient W length of a pitch (W, + W,) [m] 

h; 
[w m-* K-‘1 WI width of groove [m] 
average heat transfer coefficient for the W2 width of the protrusion [ml. 
i-th pitch (qJ W(T, - T,)) [w mm2 K-‘1 

H depth of the groove in each case [m] Greek symbols 
k thermal conductivity [w m-’ K-‘1 
L total vertical length of the specimen ; 

thermal diffusivity [ = (k/pc,)] 
thermal expansion coefficient [K-l] 

[ml AT temperature difference between the 
n refractive index of air wall and the surrounding 

*, local Nusselt number (h W/k) (=Tw-Tz) 
Nu, average Nusselt number of the ith 0 dimensionless temperature 

pitch of groove (hi W/k) I= (T- Tm)I(Tw- Tdl 
P pressure [Pa] V kinematic viscosity of the fluid [m’ s-‘1 
P* dimensionless pressure P density of the fluid [kg m-‘1. 

~=~~+P~~Y~l~P~~zl~2~1 
Pr Prandtl number [ = (v/a)] Subscripts 

9i total heat transfer rate from the ith g groove 
pitch per unit depth m m-‘1 W wall 

4” local heat flux [W m-‘1 CC surrounding. 

Q total heat transfer rate from the fin per 
unit depth w m-‘1 Superscript 

Ra, Rayleigh number (Gr, * Pr) * dimensionless quantity. 

:fins 

Pins 

Fig. 1. Pin fin array as modeled to vertical grooved fins. 

well with a new asymptotic limit with a 0.316 power elements on a vertical heated wall and they reported 
dependence on the modified Rayleigh number based that the total heat transfer rate may be nearly the 
on the channel height. Shakerin et al. [6] studied natu- same as for a smooth wall in spite of the increase 
ral convection in an enclosure with discrete roughness surface area in the studied limits. Kang et al. [7] per- 



Natural convection from vertical plates with horizontal rectangular grooves 2519 

formed an experimental study of natural convection 
from a heat source module mounted on a horizontal 
or vertical surface The natural convection flow and 
the associated heat transfer characteristics were found 
to depend strongly on the rate of energy input and the 
source thickness. Bhavnani and Bergles [S] studied 
laminar natural convection heat transfer from a ver- 
tical flat plate with several transverse roughness 
elements (ribbed and stepped surface) using inter- 
ferometer experiments. The experiments were per- 
formed varying the aspect ratio of rib and step. The 
performance of ribbed surfaces was below that of a 
plain plate of equal projected area in the tested 
Grashof number. The heat transfer rate decreased 
as the rib pitch-to-height ratio decreased. The heat 
transfer rate was larger in stepped surface than in 
ribbed surface. Desai et al. [9] investigated on natural 
convection in an enclosure with a cooled top wall and 
multiple protruding heaters using numerical simu- 
lation. A vertical side wall had five protrusions and 
the top wall functioned as the heats sink while the 
opposing vertical wall and the bottom wall were insu- 
lated. A secondary flow existed at the top of the enclos- 
ure. At low Raylleigh number (Ra* < 1.5 x lo’), the 
flow was stable and characterized by the presence of 
a primary flow cell and a counter-rotating secondary 
cell at the top of the enclosure. At higher Rayleigh 
number (Ra* > 3 x IO*), however, the isothermal top 
wall caused a periodic flow pattern in the enclosure. 

The purpose of this study is to enhance heat transfer 
using vertical plate with several horizontal rectangular 
grooves for application to cooling of electronic com- 
ponents. Both of experimental and numerical rese- 
arches were madI: to study natural convection from 
the grooves. A Mach-Zehnder interferometer was 
used to visualize the temperature distribution and the 
interferogram was compared with the numerical 
results using a modified SIMPLER code with pressure 
boundary condition. 

EXPERIMENTAL STUDY 

A model of the rectangular grooved fin is shown in 
Fig. 2. The thickness of the test section of 0.2 m. The 
fin has five rectangular protrusions and its surface 
is heated isothermally owing to very high thermal 
conductivity. Symbol H denotes the depth of the 
groove, W, is the width of the groove, W, is the width 
of the protruded top surface and W, the pitch length, 
is the sum of W, and W,. The specimens were made 
of aluminum of a high thermal conductivity. Heating 
wire was uniformly attached on the backside of the 
specimen and it was heated using a DC power supply. 
To prevent heat dissipation from the backside, an 
insulation material was adhered. The experiments 
were performed varying the aspect ratios H/W and 
WJW. The actual sizes of the models are shown in 
Table 1. 

The Mach-Zsehnder interferometer used in the 
experiment is schematically shown in Fig. 3. Iso- 

thermal lines were visualized using infinite fringe 
frames and the distribution of Nusselt numbers at the 
surfaces was measured using finite fringe frames [lo]. 
After we took a photograph of the interferogram with 
a camera, we magnified the picture to the size of 
10” x 8”. Then, we analyzed it with a digitizer having 
a 500 dpi (dots per inch) resolution. It was assumed, 
for the convenience of data processing, that the tem- 
perature gradient of the refractive index dn/dT was 
constant. For verification of the experimental results, 
the average Nusselt number over a vertical flat plate 
was measured and compared with the studies of Chur- 
chill and Chu [1 11. There was about 5% discrepancy 
between them. The greatest error came from the 
uncertainties in reading the interferogram, i.e., the 
temperature gradient near the wall was very high and 
the fringes had fairly large thickness. Although 
additional effects such as three-dimensional flow were 
considered to exist, they were negligible compared 
with the reading error. 

NUMERICAL STUDY 

The interferograms give information only on the 
temperature distributions. To find the velocity field 
and to further verify the experimental results, numeri- 
cal simulations were also performed. 

The dimensionless governing equations are as fol- 
lows : 

(1) 

au* au* ah* ah* ap* u*- +2,*- = __ + __ _ - 
ax* ay* ax** ay*2 ax* (2) 

au* a%* a%* u*-++L’*Z)*=_+__aP*+Grwe ax* ay* ax*2 ay*2 ay* 

The Boussinesq approximation was used by intro- 
ducing P = P*pm(v2/W2) -p&y and the employed 
dimensionless quantities were defined as : 

x* = 2 w’ y*=$ 
UW 

u* = - 
v ’ 

VW v* = - f3= 
Tm T- 

v > T,-T,’ 

Gr =gB(Tw--mW3 
w 

VZ 
and Pr =’ 

u (5) 

where symbol W is the length of a pitch (W, + W,). 
The boundary conditions were given as follows : 

u* = 0, v* = 0 at the surfaces of the tin (6) 

P* = 0 at the top, bottom and right boundaries (7) 
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insulated 

0: pitch number 

the inner surface 
the upper surface 
the outer surface 
the bottom surface 

Fig. 2. Notations of the vertical rectangular grooved fin 

Table 1. Dimensions of the models 

Case 

1 (square groove) 
2 (short groove) 
3 (long groove) 
4 (large groove) 

W= W,+W, (mm) H/W W,/W 

14 0.5 0.5 
14 0.25 0.5 
14 1 0.5 
15 7115 0.2 

0 = 1 at the surface of the tin 

ae 
- = 0 ax* at the right boundary. (8) 

In equations (7) and (8), the right boundary is a far 
location which is twelve times the depth of a groove 
away from the fin. The top computational boundary 
is above the last protrusion and the bottom boundary 
is below the first. 

When the Nusselt number and the relevant heat 
transfer rate are defined as follows, 

Mu, = QW 

q” = h(T,- z-,) (9) 

they are dependent on the following variables from 
the governing equations and boundary conditions. 

Nu, =f(Gr,,Pr,H/W, WJW ,... ). (10) 

If the Prandtl number is constant, the above equation 
can be alternatively written as 

Nu, =f(Ra,,H/W, W,jW,...) (11) 

where, Ra, = Gr; Pr. 
The effect of Prandtl number was assumed to be 

negligible for common fluids. A constant Prandtl 
number 0.71 was taken, indeed. Thus, the effects of 
Ra, and aspect ratios (H/W, W,/ WJ were investigated 
in this study. 

In a natural convections problem, velocities cannot 
be prescribed at the boundaries. We modified a SIM- 
PLER code [ 121 for pressure boundary condition and 
used pressures as the boundary conditions (see the 
Appendix for details). Underrelaxation of boundary 
velocity and pressure is made to make the com- 
putation stable. 

VERIFICATION OF THE NUMERICAL 
SIMULATION 

First, grid dependence was examined to minimize 
the numerical uncertainty. The calculated variables 
using current grids (38 x 81) were compared with 
those using a 104 x 233 mesh. The difference of total 
heat transfer rate between them was at most about 
3 %. Compromising between the computational cost 
and the accuracy, the current mesh is considered 
appropriate. 

Secondly, the average heat transfer rate for a ver- 
tical flat plate was computed and compared with that 
of Churchill and Chu [ll]. Only about 3% dis- 
crepancy for the numerical result was found. 

Lastly, to demonstrate the accuracy of numerical 
result, the local Nusselt number distribution in a 
groove of case 1 for Ra, = 1.14 x IO4 is shown in Fig. 
4 as compared with the interferometric result. Both 
results agree well with each other within 5% error. As 
mentioned earlier, however, the numerical results are 
slightly better in accuracy. 

Furthermore, experimental and numerical iso- 
therms are given in Fig. 5. Isotherms of experimental 
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HALF-MIRROR 

TEST SECTION 

FULL-MIRROR 
\ r 

15mW He-Ne 
LASER 

CONCAVE-MIRROR 

CAMERA 

HALF-MIRROR FULL MIRROR 

<ONCAVE-MIRROR 
Fig. 3. The Mach-Zehnder interferometer used in experiments. 

and numerical results agree very well both quali- 
tatively and quantitatively. Since the numerical results 
are considered better in accuracy than the exper- 
imental results, quantitative evaluations hereafter are 
based on numerical results. All the four cases of Table 
1 were calculated and the results are compared. Since 
the geometry is an important design parameter while 
the overall size is roughly fixed, the relative per- 
formances of different grooves need be discriminated 
by directly comparing the heat transfer rates. The 
Rayleigh number was varied by taking 
Ra, = 1.14x 104, 1.14x105,1.14x 106and 1.14x 107. 

RESlJLTS AND DISCUSSION 

The isotherms for the four cases in Table 1 are 
shown in Fig. 6 when Ra, is 1.14 x 104. Generally, the 
higher the location of the groove is, the thicker is the 
thermal boundary layer just like in a vertical flat plate. 
The outer parts of the protrusion have dense isotherms 
and those in the groove are sparse. The wall heat flux 
in the groove is thus much lower than that on top 
of the protrusion. Isothermal lines of cases 2 and 4 
penetrate from the ambient into the groove more dee- 
ply than the other cases. For these two cases, the 
groove aspect ratio H/W, is smaller than the other 
cases. The local Nusselt numbers are shown in Fig. 7 

for case 1 (square groove) with Ra, = 1.14 x 1 04. The 
local Nusselt numbers is the greatest at the outer sur- 
face (III) of the groove. At the bottom (IV) and upper 
surface (II), it increases from the inner corner to the 
outer edge. And the heat transfer rate at the top sur- 
face is higher than that at the bottom surface. At the 
inner surface (I) of the groove, it is very small. It has 
a local maximum at the center and decreases at the 
corners. And the larger the pitch numbering is (mean- 
ing the upper ones ; see Fig. 2), the smaller is the local 
Nusselt numbers. The distribution pattern of Nusselt 
number for the other cases (2-4) is also similar. 
However, cases 2 and 4 have greater Nusselt number 
at the inner surface and case 3 has a smaller value 
there. 

The pattern of Nusselt number distribution in the 
groove can be easily understood when the flow pattern 
in the groove is known. Streamlines of each case are 
shown in Fig. 8 for Ra, = 1.14 x 104. Note that the 
streamlines in the groove are drawn with very fine 
stream function interval. Indeed, velocities in the 
groove are very small. The streamlines in the groove 
vividly visualize the recirculations. A weak recir- 
culation flow is generated near the bottom surface of 
the second groove and grows in its size in the following 
grooves while the main flow penetrates deep in the 
groove without a recirculation at the first one. The 
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Fig. 4. Comparison of the experimental Nusselt numbers with error bars with the numerical ones at the 
surfaces of the third pitch for Ra, = 1.14 x lo4 (case 1) (see Fig. 2 for the pitch and the surface numbering). 

recirculations in the groove prevents the main flow 
from flowing into the groove. For this reason, the heat 
transfer rate at the bottom surface is very small and 
so is the Nusselt number. When the groove is very 
deep (see Fig. S(c)), another recirculation is added in 
the groove and the Nusselt number at the bottom 
surface becomes even smaller. 

For Ra, = 1.14 x 104, the total heat transfer rate is 
the largest for case 3 and its amount is about 25% 
larger than that of vertical flat plate. It is smaller in 
the sequence, case 1 (4.6%), case 2 (2.8%) and case 4 
(-0.2%). The total heat transfer of case 4 is even 
smaller than that for a vertical flat plate although the 
exposed area is greater than that of flat plate. This 
finding is analogous to the findings of Shakerin et al. 
[6] and Bhavnani and Bergles [8]. 

The isotherms for Ra, = 1.14x 104, 1.14x 105, 
1.14 x lo6 and 1.14 x 10’ in case 1 are shown in Fig. 9 
to see the effect of Ra,. The higher Ra, is, the more 
deeply the isotherms and streamline penetrate into the 
groove. The ratio of contribution by the inner surface 
to the total heat transfer increases as Ru, increases. 
The dimensionless total heat transfer rate for variation 

of Ra, is shown in Table 2 for all cases and for a 
vertical flat plate. Total heat transfer rates of all cases 
are larger than that of a flat plate when 
Ra, 2 1.14 x 105. The higher Ra, is, the larger is the 
enhancement of heat transfer. Velocity in the groove 
is large at large Rayleigh number and heat transfer 
rates at the surfaces in the groove also become large. 
The advantage by increasing the surface area is vis- 
ualized when the Rayleigh number is larger than about 
106. 

The correlations of Nusselt number vs. Rayleigh 
number for each pitch were calculated from the pre- 
vious quantitative results. Symbol Nu, is the average 
Nusselt number of the first pitch, which is the dimen- 
sionless heat transfer rate obtained by dividing the 
total heat transfer rate q, per unit depth from surfaces, 
I-IV of the first protrusion by k(T,- Z’,), i.e., 

(l-3 

41h fv-w-~m>. (13) 
The correlations of Nu, vs. Ra, are optimized as fol- 
lows : 
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(4 

03 

Fig. 5. Comparison of isotherms around a grooved plate (case 1, Ra, = 1.14 x 104). 

Nu, = 0.45RaEz9 for case I 

Nu I = 0.46Ra$28 for case 2 

Nu = 0 45Ra0.3 f . w for case 3 

Nu = 0 4Ra0.3 I . w for case 4. (14) 

With Nu, denoting the average Nusselt number of the 
ith pitch, defined in the same manner as Nu,, the - - 
relation between Nu, and Nu, is correlated as follows : 

(15) 

where x, is a correlation parameter. This is a vertical 
position from the base of the first pitch. It is contrived 

to correlate the average Nusselt number of first pitch 
with that of another pitch. The values of x, and n are 
shown in Table 3. The average error of these relations 
is about 6% in the given range of Ra,. The relations 
are valid only when the number of pitches does not 
significantly exceed the tested case, i.e., five. Fortu- 
nately, many practical applications fall in this limi- 
tation. 

The total heat transfer rate from a vertical rec- 
tangular grooved fin increases very rapidly with the 
increase of Ra,, while the growth rate for a vertical 
flat plate is not that high. In equation (14), the average 
Nusselt numbers are proportional to the 0.28-0th 
power of Rayleigh number while that of a vertical flat 
plate is proportional to the 0.25th power of Rayleigh 
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(a) case 1 (square groove) (b) case 2(short groove) 

4 
I-- 

5 6 

(c) case 3(long groove) (d) case 4(large groove) 
Fig. 6. Isotherms for the four geometries (Ra, = 1.14x 104). 

number. Apparently, the advantage of grooved fins is fluids too within 25% error, since, for example for 
appreciable for larger Rayleigh numbers. The ratio laminar natural convection along a vertical wall, the 
of Nusselt numbers to the vertical flat plate case is Nusselt number may be expressed as a function of 
arranged as : Ra, only for any Pr within 25% error [13]. 

N&,X, _ = 0 57Razo6’ 
NuR,~ ’ 

for case 1 
CONCLUSION 

Nut,,,? - = 0.62Rato5’ 
N&t 

for case 2 
Experimental and numerical studies on laminar 

natural convection from vertical plate with horizontal 
grooved fins have been performed. Both results agree 
well with each other for Ra, = 1.14 x lo4 and the 
numerical method is further employed to investigate 
the heat transfer and flow field at different Ra,. The 
Nusselt number is the greatest at the outer surface of 
the protrusion. At the bottom and top surfaces, it 
increases from the inner corner to the outer edge and 
it is a little higher at the top surface than at the bottom 
surface. It is very small at the inner surface ; it has a 
local maximum at the center and decrease at the 
corner. At least one recirculation flow exists for all 
the tested cases near the bottom surface. It prevents 
the main flow from flowing into the grooves. Conse- 
quently, the total heatitransfer rate from a grooved 
surface may be smaller than that from a smooth sur- 
face especially when the Rayleigh number is not large 

- 
N&S,3 _ = 0 77Ra0-046 
Nufiat ’ w 

for case 3 

Nucase~ _ = 0.4Ra 0 094 

Nufl,t 
W for case 4. (16) 

The flow is laminar in the given range of Rayleigh 
number (Ra, < 1.14 x 10’). But the flow field is found 
to become unstable when Ra, is greater than 
1.14x 10’. 

The experiments and analyses here have been made 
for air (Pr = 0.71). For future application to liquid 
cooling, correlations for other fluids are desirable. At 
this point, no precise prediction for different Pr fluids 
can be made; however, it is anticipated that the 
present correlations for Nu here may be used for other 
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Fig. 7. Distribution of Nu, at each surface of a pitch for Ra, = 1.14 x lo4 (case 1) (see Fig. 2 for the pitch 

and surface numbering). 
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Fig. 8. Streamlines for the four geometries (Ra, = 1.14 x 10“). 

(a) Rayleigh number= 1.14x 1 O4 (b) Rayleigh number= 1.14x 1 O5 
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Fig. 9. Isotherms when varying Ra, (case 1). 
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Table 2. Dimensionless heat transfer rate for each case varying Ra,[Q/(k(T,- T=))] 

2521 

Flat? 
Case 1 
Case 2 
Case 3 
Case 4 

Ra, = 1.14x lo4 Ra, = 1.14 x 10’ Ra, = 1.14x 10’ Ra, = 1.14 x 10’ 

17.8 31.7 56.3 100.2 
18.62 34.86 12.66 158.4 
18.29 33.6 68.18 145.1 
22.29 39.38 19.31 171.5 
17.77 36.23 79.25 191.77 

t These values were computed from the correlation of Churchill and Chu [l 11. 

Table 3. The value of variables in equation (15) 

Ra, = 1.14x lo4 Ra, = 1.14 x 10’ Ra, = 1.14x lo6 Ra, = 1.14 x 10’ 

XI n XI n XI ?I XI n 

Case 1 0.0109 0.171 0.0205 0.21 0.106 0.299 0.342 0.365 
Case 2 0.028.1 0.197 0.0448 0.224 0.122 0.279 0.177 0.274 
Case 3 0.00267 0.144 0.0053 0.188 0.0585 0.302 0.346 0.447 
Case 4 0.15 0.29 0.985 0.596 0.506 0.376 0.51 0.161 

enough. When Rtz, is large, the heat transfer rate from 
the governed fin becomes greater than that from a 
flat surface. The average Nusselt number of the first 
protrusion is roughly proportional to the 0.28&0.3th 
power of the Rayleigh number while that of a vertical 
flat plate is proportional to the 0.25th power of the 
Rayleigh number. 

Proper correlations have been made to obtain the 
heat transfer rate from each pitch for the tested 
geometries and Rayleigh numbers. 
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APPENDIX-TREATMENT OF PRESSURE 
BOUNDARY FOR SIMPLER CODE 

The further details of the modified SIMPLER code [12] 
for pressure boundary condition as follows. 

Refer to ref. [ 121 for explanation of symbols in this Appen- 
dix. 

Consider the conditions at u(2,j) in Fig. Al which is 
subject to pressure boundary condition. We take a very small 
control volume size at the boundary. 

Equation for u, 
From SIMPLER algorithm, 

a&, = c a,bu.b+a,u,+b+ (P~--P&%. (Al) 
all but W 

We can rewrite equation (Al) as 



2528 C. E. KWAK and T. H. SONG 

Main grid 

Control surface 

Fig. Al. Grids near the pressure boundary. 

@e-a&, = 1 u”bu”b+~,(u,-u,)+~+@P-P,)~,. 
all but w 

642) 
With relaxation factor r, we perform equation (Al) x 
(1 - r) + equation (A2) x r to give 

+ra&, -u,) +b+ (PP -&A,. (A3) 

We treat Us - ru, as the new a,, (1 - r)au. as the new a, and 
b+ ru,(u,--u,) as the new b. The converged solutions of 
equations (Al), (A2) and (A3) are identical to each other 
regardless of the value of r, once they converge. If r is small, 
convergence is slower and stable. 

Equation for pressure 
The pressure equations for the near-boundary nodes are 

considered here. We have, 

u, = &+4(pr-Pa). (A4) 

Equation for u, is conceived as follows. We assume, 

u, = li,+d,$pw-pp). (A5) 1 

Note that ii, is not known and de(Ax2/Ax,) is made so as to 
get the pressure gradient. With equation (A5), a, for pp- 
equation becomes 

In evaluating 6, 12, must be properly decided. Consider a case 
wherep, = pN = pp. Conduction-like pressure distribution is 
desirable to have 6 = 0. This means we should take ti. = ti,. 
However, direct application of this condition and equation 

(A6) makes the numerical scheme extremely unstable. Thus, 
equation (A5) is used to evaluate the following left-hand side 
appearing in the expression of b, as 

(A7) 

However, if we introduce this expression into the pr-equa- 
tion, we have a,~,-u,p, in the constant term b, thus, the 
converged solution becomes independent of pw. To avoid 
this, (AxZ/Ax,)(pw-pr) is replaced by pP-pE, enforcing 
linear pressure distribution. Thus, in evaluating b, 

6, = u, - @P -pa)d,. (Ag) 

This is equivalent to taking ua twice the original value 
indirectly. This indirect scheme is retained, since direct doub- 
ling of ua makes the computation very unstable. If the 
pressure boundary is an outlet, the static pressure there is 
the ambient (given) pressure. However, if it is an inlet, the 
ambient pressure most likely acts as a stagnation pressure. 
Thus, it is more realistic to assign the inlet static pressure by 
subtracting the dynamic head from the ambient pressure. 

Equation for pressure correction 
Like in the above paragraph, we take 

n, = u:+dw(P&Ph). (‘49) 

Since p& is given pk is equal to zero. 
Since we do not know d,, we assume, as before. 

d, = deAx2/Ax,. This results in the same coefficients as the 
pressure equations (unb and up). 

The modifications are summarized as : first, the constant 
term b in the discretization equation is different; second, 
boundary values are different (i.e. p = pgiven and p’ = 0, 
respectively) ; and, last, u, is also corrected using equation 
(A9). The last action makes the mass balance fully met. 


